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Metaheuristics like ant colony optimization (ACO) can be used to solve
combinatorial optimization problems. In this paper we refer to its suc-
cessful application to the vehicle routing problem (VRP). At the beginning,
we introduce the VRP and some of its variants. The variants of VRP were
designed to reproduce the kind of situations faced in the real-world. Fur-
ther, we introduce the fundamentals of ant colony optimization, and we
present in few words its application to the solution of the VRP. At the end,
we discuss the applications of ACO to a number of real-world problems:
a VRP with time windows for a major supermarket chain in Switzerland; a
VRP with pickup and delivery for a leading distribution company in Italy
and an on-line VRP in the city of Lugano, Switzerland, where clients’ or-
ders arrive during the delivery process.

Introduction

Most logistics problems are particularly challenging as their search space
grows exponentially with the problem dimensions and no efficient algo-
rithms to explore such space are known. For these problems, which are
technically known as NP-hard, the time required to find an optimal solu-
tion might be simply too high for practical purposes.

Heuristics methods have been devised to explore parts of the search
space, concentrating in those parts that appear to be most promising,
thus reducing the time required to obtain a sub-optimal, but still good
enough, solution. A heuristic makes use of peculiar characteristics of a
problem and exploits them to find a solution. Therefore a heuristic has to
be especially devised for each new problem.
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A metaheuristic is a set of concepts that can be used to define heuris-
tic methods that can be applied to a wide set of different problems
[16]. Well known examples of metaheuristics include simulated anneal-
ing (SA), tabu search (TS), iterated local search (ILS), evolutionary algo-
rithms (EC), and ant colony optimization (ACO), the subject of this paper.

Ant Colony Optimization (ACO) is based on the observation that ants can
find the optimal path between a food source and their nest exploiting a
mix of probabilistic behavior and pheromone depositing. In fact, in ACO
a set of artificial ants somehow simulate the behavior of real ants; the
artificial ants move on the graph representation of a combinatorial opti-
mization problem and build solutions probabilistically. The probabilities
are biased by artificial pheromones that ants deposit while building so-
lution (for a recent overview of ACO see [3]; for a detailed description
[8]). In this paper we discuss how ACO can be successfully applied to the
solution of real-world vehicle routing problems.

The Vehicle Routing Problem

The vehicle routing problem can be designed as a combinatorial opti-
mization problem: Finding optimal routes for a fleet of vehicles perform-
ing assigned tasks on a number of geographically sectored clients. An
answer to this problem is the best route serving all clients using a fleet of
vehicles, respecting all operational constraints, such as vehicle capacity
and the driver’s maximum working time, and minimizing the total trans-
portation cost.



There are 3 main factors that define and constrain each model of the VRP:
the road network, specifying the relatedness among clients and depots,
the vehicles, transporting goods between clients and depots on the road
network; the clients, which place orders and receive goods.

Joining the various factors of the problem, we can define a whole set of
different VRPs (for a detailed overview of the various VRPs see [20]). All
these variants have been created in order to bring the VRP closer to the
kind of situations faced in the real-world. Table 1 shows some important
VRP starting from basic version, continuing by static case (VRP with time
windows, VRP with time windows and pick-up and delivery constraints)
and finishing by dynamic case (time dependent VRP like on-line VRP).

Optimization Framework Inspired By Ants

Ant colony optimization [5] is a metaheuristic inspired by the observa-
tion, made by ethologists, that ants are able to find the shortest path
to a food source by laying and following chemical trails. The chemi-
cal substance which ants use to communicate information regarding the
shortest path to food is called pheromone. Communicate means that a
moving ant lays some pheromone on the ground, thus marking a path
with a trail of this substance. In the majority of cases an isolated ant
moves randomly and when it discovers a previously laid pheromone trail
it can decide, with high probability, to follow it, thus reinforcing the trail
with its own pheromone. The group behavior that results is a form of
self-organisational process where the more ants follow a trail, the more
attractive for other ants it becomes. The process running by basic rules
is characterised by a positive feedback loop, where the probability with
which an ant chooses a path increases with the number of ants that
previously chose the same path. Other positive characteristics of the
above process are the flexibility (adaptability) and the robustness (sys-
tem doesn’t depend on one ant). This group behavior of ants with its pos-
itive attributes inspired the ACO metaheuristic. The main factors are arti-
ficial ants (called from now on ants), simple computational agents that in-
dividually and iteratively construct solutions on a graph, which has been
modeled depending on the specific problem. A problem solution is an or-
dered sequence of nodes connected by edges visited by exploring ants.
Ants compute a solution in parallel, deploying the search process over
several constructive computational threads. A dynamic memory struc-
ture, inspired by the pheromone laying process, guides the construction
process of each thread.
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The memory structure incorporates information on the effectiveness of
previously obtained results. Intermediate partial problem solutions are
seen as states; at each iteration k of the algorithm each ant moves from
state x k (i) to x k+1 (j), enlarging the partial solution from node i adding
node j.

Based on these elements the first ACO algorithm to be proposed was Ant
System (AS) [7]. It is organized in two main stages: construction of a so-
lution, and update of the pheromone trail. Since its publication different
variants have been proposed to improve the solutions of combinatorial
optimization problems: elitist ant system [4], rank-based ant system [1],
and Max - Min ant system [19] are variants, where the algorithm dif-
fers from the original mainly in the pheromone update rule. On the other
hand, extensions of AS display more substantial changes in the algorithm
structure. Ant Colony System (ACS, [6]) is one of them. ACS differs from
AS for a revised rule used in the tour construction algorithm, and for the
use of both local and global updates of the pheromone trails.

ACS has been shown to be very efficient in solving problems of the ve-
hicle routing class, ranging from the static case (VRP with time windows,
and VRP with time windows and pick-up and delivery constraints) to the
dynamic case (on-line VRP). In the next section we describe how ACO has
been applied in a number of cases to solve real world logistic problems.

Major supermarket chains:
Distribution of goods from inventory stores to shops

In this business case one of the major supermarket chains in Switzerland
has the following challenge: Palletized goods must be distributed to more
than 600 stores, all over Switzerland. To replenish their local stocks each
store orders daily quantities of goods, which have to be delivered within
time windows. So each store can plan and allocate efficiently according
to the daily availability of its personnel and the time requested for in-
ventory management tasks. Further there are three types of vehicles:
trucks (capacity: 17 pallets), trucks with trailers (35 pallets), and trac-
tor units with semi-trailers (33 pallets). One practical restriction is the
access of vehicles to the store, which depends on the store location. In
some cases the truck with trailer can leave the trailer at a previous store
and then continue to other less accessible locations. Moreover the num-
ber of vehicles is assumed to be infinite, since transport services can be
purchased on the market according to the needs.



Problem Type Constraints Objective NP-hard Problem
(yes/no)

Capacitated vehicle routing problem - Having vehicles with limited capacity Minimise the total travel cost Yes [13]
(CVRP, basic version of the VRP) - Client demands are deterministic and known

in advance

- Deliveries cannot be split

- Vehicle fleet is homogeneous
Vehicle routing Problem with time window | Each Client is associated with a time window | Minimise the total travel cost Yes [18]
(VRPTW) [15, 14, 12] and a service time
VRP with pick-up and delivery (VRPPD) [2] The transport items are not originally concen- | Minimise the total travel cost Yes

trated in the depots, but they are distributed

over the nodes of the road network. A trans-

portation request consists in transferring the

demand from the pick-up point to the deliv-

ery point. These problems always include time

windows for pick-up and/or delivery.
Probabilistic, dynamic and stochastic vehicle | The assumption of time invariancy must be re- | Minimise the total travel cost. Yes

routing (assumed generic term: Dynamic VRP)
like online VRP [10]

laxed and data become time-dependent. More-
over, using data on current traffic conditions
to estimate travel times requires the relaxation
of the assumption of determinism, introducing
uncertainty and adding another level of com-
plexity to the problem.
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Tab. 1: Important vehicle routing problems.




Human Planner AR-RegTW  AR-Free
Total number of tours 2056 1807 1614
Total km 147271 143983 126258
Average truck loading 76.91% 87.35% 97.81%

Tab. 2: Comparison of the man-made vs. the computer-generated tours
in the VRPTW application.

The road network graph could be computed due to digital road maps.
On the other hand the distance matrix between pairs of stores has been
rescaled using a company speed model, based on many years of expe-
riences and collecting data. For example, if the distance is less than 5
km, the average speed is 20 km/h; if the distance is more than 90 km,
the speed is 60 km/h; in between there is a range of other speed values.
Constant parameters are the time to set-up a vehicle for unloading and
the time required to hook/unhook a trailer. A variable parameter is the
service time, which depends on the number of pallets to unload. The
main restriction is that all the routes must be performed in one day, and
the company imposes an extra constraint stating that a vehicle must per-
form its latest delivery as far as possible from the inventory, since it could
be used to perform extra services on its way back. These extra services
were not included in the planning by explicit request of the company.

Solution method and results

This planning challenge was modeled as a VRPTW, and solved by an
implementation of the MACS-VRPTW algorithm [9], named ANTROUTE.
MACS-VRPTW is the most efficient ACO algorithm for the VRPTW and one
of the most efficient metaheuristics overall for this problem. ANTROUTE
adds to MACS-VRPTW the ability to handle the choice of the vehicle type:
at the start of each tour the ant chooses a vehicle. To prevent vehi-
cles arriving too early at the stores a waiting cost was also introduced.
The central idea of the MACS-VRPTW algorithm is to use two ant colonies
(MACS stands for multi ant colony system) to optimize two objectives:
One colony, named ACS-VEI, minimizes the vehicles while the other one,
named ACS-TIME, minimizes time.

Human tour planners evaluated the first tours computed by ANTROUTE
and the tours were not accepted as feasible, even if the performance was
considerably higher than theirs and no explicit constraints were violated.
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That's the reason why a further modeling step was required, to let “invis-
ible” constraints emerge. One of them was a regional planning strategy,
that led to petal shaped tours, as the human planners were currently
doing. This way of doing tours was included in the reformulation of the
problem, but at the same time the project team tried to loosen the con-
straint a bit. Stores would be attributed to distribution regions, allowing
at the same time stores near the border of the distribution region to also
belong to the neighbouring region. This new generation of tours were a
bit worse than the unconstrained solution, but nonetheless better than
the solutions found by the human planners. Table 2 presents the results
obtained by ANTROUTE compared with those of the human planners.

ANTROUTE was run under two scenarios: AR-RegTW, with regional plan-
ning and 1-hour time windows; AR-Free, where the regional and the time
windows constraints were detached. The challenge was to distribute
52000 pallets to 6800 clients over a period of 20 days. ANTROUTE was
run on the available set of orders daily and it took about 5 minutes to find
a solution. At the same time, the planners were at work and it took them
at least 3 hours to find a solution. After the testing period, the perfor-
mances of the algorithm and of the planners have been compared using
the same objective function. A further advantage of an algorithm able to
find the solution to a very hard problem in such a short time is the possi-
bility of using it as a strategic planning tool beside of the operative role.
Figure 1 indicates how running the algorithm with wider time-windows at
the stores returns a smaller number of tours, which can be interpreted
in a significant reduction of transportation costs. The logistic manager
can therefore use the optimization algorithm as a tool to check how to
re-design the time-windows in the stores.

Major logistics operator:
Distribution from factory to inventory stores

In this business case the company is a major logistics operator in Italy.
The distribution process comprises moving palletized goods from facto-
ries to inventory stores, before they are after distributed to shops. A
customer in this vehicle routing problem is either a pick-up or a deliv-
ery point. A central depot doesn’t exist, and approximately 1000 - 1500
vehicles per day are used.
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Fig. 1: The relationship between the number of vehicle routes and the
time window width.

Because of the geographical constitution of Italy and the strict legal con-
straint on the maximum number of hours per day that a driver can travel,
routes can be performed within the same day, over two days, or over
three days. All pick-ups of a tour must happen before deliveries, and or-
ders cannot be split among tours. Further are time windows associated
with each store and there is only one type of vehicle: tractor with semi
trailer. The load is measured in three units: Pallets, kilograms and cubic
meters. Each one of these units has a capacity constraint and the first
one that is passed causes the violation of the constraint. Since they are
provided by flexible sub-contractors, the availability of trucks is assumed
to be infinite. These sub-contractors are distributed all over Italy, and
therefore trucks can start their routes from the first assigned customer,
and for the company doesn’t result any traveling cost to the first client in
the route. The road network graph could be found out due to digital road
maps, computing the shortest path between each couple of stores. The
travel times are calculated according to the travelled distance, given the
average speed that can be obtained on each road segment according to
its type (highway, extraurban road, urban road).
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Fig. 2: Comparing man-made and computer-generated tours. Higher
efficiency improvements are observed when the human planner perfor-
mance is lower. The dots are experimental values, and the solid line is a
regression on those values.

Further the loading and the unloading times are assumed to be constant
parameters, since the company has been unable so far to provide better
estimates. Consequently this assumption is a rough approximation im-
posed by the company, which also imposed another constraint, related
to the same problem, setting a maximum number of cities to visit per
tour (usually less than six). Note that more than one customer can reside
in a city. Furthermore, the company requested that the distance between
successive deliveries should be limited by a parameter.

Solution method and results

This planning challenge was modeled as a VRP with pickup and delivery
and time windows (VRPPDTW). The objective function quantifies the av-
erage tour efficiency. The ANTROUTE algorithm for using in this context
has been modified: Since for this problem there is a single objective in-
stead of two (business case before) — to maximise average efficiency —
the ant colony minimising the number of vehicles was removed.



Human Planner

ANTROUTE

Absolute difference  Relative difference

Total nr of tours 471.5 460.8
Total km 175441 173623
Efficiency 84.08% 88.27%

-10.7 -2.63%
-1818.2 -1.32%
+4.19% -

Tab. 3: Comparison of the man-made vs computer-generated tours in the VRPPDTW application.

Table 3 resumes the comparison between man-made and computer-
generated tours over a testing period of two weeks. A significant en-
hancement in the efficiency of computer-generated tours can be noticed.
Another interesting point is to observe how the algorithm performance is
correlated with the difficulty of the problem, which is related to the num-
ber of orders to satisfy. Figure 2 shows on the x-axis the efficiency of the
man-made tours, and on the y-axis the efficiency improvement obtained
using the computer-generated tours. When the problem is easy, because
it containes a limited number of orders, and the human planner sched-
ules well, the computer is not able to deliver a significative enhancement,
but when the planner starts to fail coping with the problem complexity,
and the performance falls, the gain in using the algorithm sensibly rises.

Fuel oil distributor:
On-line VRP for fuel distribution

This case study treats a fuel oil distribution company in Switzerland,
which serves its customers from its main depot located near Lugano with
a fleet of 10 trucks. The fuel oil distributor noted that during every Winter
season there was always a subset of their customers that ran out of fuel
and had to place urgent orders. These unanticipated orders have an im-
pact on the planned delivery routes of the trucks, and the vehicle routing
problem becomes very “dynamic”. This means that a considerable per-
centage of orders must be fulfilled after the trucks have already left the
depot. The goal of this case study was to evaluate the impact of a reac-
tive strategy for vehicle routing, starting from data analysis collected in
periods when urgent deliveries were in high request. A sample of 50 cus-
tomers from the company data base was randomly selected and travel
times among them were computed. In the company records, customers
randomly appeared during the working day with random requests for a
quantity of fuel to be supplied.
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An 8 hours working day was considered and a service time of 10 minutes
for each customer was supposed. The cut-off time was set to 4 hours.
Thenceforward the new orders received were deferred to the following
working day.

Solution method and results

The problem description above fits the on-line VRP variant, where new or-
ders can be allocated to vehicles which have already left the depot (e.g.,
parcel collection, feeder systems, fuel distribution, etc.). Montemanni et
al. [17] have developed an ACO-inspired algorithm, ACS-DVRP, adapted
from the decomposition of the on-line VRP into a sequence of static VRPs.
ACS-DVRP solves the on-line fuel oil distribution problem and its algo-
rithm architecture consists of three main elements: the event manager,
the ant colony algorithm and the pheromone conservation strategy. The
event manager obtains new orders and maintains track of the already
served orders and of the position and the remaining capacity of each
truck. This information is used to build the sequence of static VRP-like
instances. The working day is split into time slices and for each of them a
static VRP is created. Every static VRP considers all the already received
(but not yet executed) orders. New orders received during a time slice
are deferred until its end. At the end of each time slice, customers whose
service time starts in the next time slice are assigned to the trucks. They
will not be considered in the following static VRPs.

The ant colony algorithm applied based on the MACS-VRPTW implemen-
tation, named ANTROUTE, is described in former sections. Instead of two
ant colonies there is only one, which is in charge of minimizing the total
travel time. Furthermore the pheromone conservation strategy is char-
acterised as follows. Once a time slice is over and the relative static
problem has been solved, the pheromone matrix comprised information
about good solutions. Since each static problem is potentially very similar
to the next one, this information is transferred to the next problem [11]:
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if a couple of customers is in both the previous and the current time slice,
the pheromone on the arcs connecting two nodes is brought forward as a
fragment of its value in the previous problem.

Several test problems were created, where the algorithm ACS-DVRP was
applied, due to varying the number n,, of time slices into which the work-
ing day was divided. As the size of each problem in a time slice increases
as the length of the time slice decreases, the time ¢, assigned to ex-
ecuting the ant colony system and the time 7;; allocated to local search
improving the solution were adapted accordingly. Especially the ratio be-
tween 1, and t;;, was kept around equal to 10. Table 4 and its first three
rows with the values parameters ny, 1, and t;; define the settings of the
experiments. The final row shows the total travel time of the solutions
calculated by the ACS-DVRP algorithm. The results show that, for this
specific case study, good values for n,; are between 10 and 50. Espe-
cially, 25 appears to be the best choice. Large values of n;; did not lead
to satisfying results because optimization was restarted too often, before
a good local minimum could be obtained. Otherwise, when n,; was too
small, the system was not able to take advantage of information on new
incoming orders.

Conclusions

This contribution describes the metaheuristic ant colony optimization and
how it can be successfully used to solve a number of variants of the ba-
sic vehicle routing problem. The main part presents two industrial-scale
applications of ACO for the solution of static VRP problems: a VRP with
time windows and a VRP with pickup and delivery. Then the contribution
focuses its attention on one important dynamic variant of the VRP: the
on-line VRP. The problem is receiving increasing attention based on its
relevance to real world problems, in particular for distribution in urban
environments. The applications of ACO on real-world VRP shows that this
metaheuristic inspired by ants has become an important tool in applied
operations research.
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