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Research in social insect behaviour has provided computer scientists with powerful methods for designing distributed control and
optimization algorithms. These techniques are being applied successfully to a variety of scienti®c and engineering problems. In
addition to achieving good performance on a wide spectrum of `static' problems, such techniques tend to exhibit a high degree of
¯exibility and robustness in a dynamic environment.

Ethologists use modelling to understand animal behaviour. Recent
research in social insect behaviour suggests that models based on
self-organization can help explain how complex colony-level beha-
viour emerges out of interactions among individual insects1±3.
Although the goal of a modeller is generally to understand the
living, a model can in principle be explored beyond the biologically
plausible. Although biology does not necessarily bene®t from such
an exploration, computer scientists and engineers have been able to
transform models of social insect collective behaviour into useful
optimization and control algorithms. This new line of research
concerns the transformation of knowledge about how social insects
collectively solve problems into arti®cial problem-solving tech-
niquesÐproducing a form of Arti®cial Intelligence, or Swarm
Intelligence3, in which the underlying model of intelligence is the
collective intelligence of a social insect colony. Some of the tech-
niques of Swarm Intelligence are now maturing. Optimization and
control algorithms inspired by models of co-operative food retrieval
in ants have been unexpectedly successful and have become known
in recent years as Ant Colony Optimization (ACO)4,5 and Ant
Colony Routing (ACR)6±8. Real-world implementations are emer-
ging. Other techniques, inspired by co-operative brood sorting by
ants9,10 or task allocation in social wasps3, are still in a preliminary,
proof-of-concept stage, with no systematic benchmarking of their
performance. ACO and ACR will be described in more detail
here.

Ant Colony Optimization
The ability of ants to optimize is best exempli®ed by the experiment
described in Box 1. In this experiment1, the ants can select the
shortest path to a food source because they lay and follow pher-
omone (chemical) trails. But the ants' success in collectively select-
ing the shortest path is only statistical: the colony may occasionally
get `stuck' on a longer path if by chance the longer path is the ®rst
one to be marked. In using the `trail laying±trail following'
metaphor for optimization purposes, computer scientists have
found it essential to improve the convergence properties of their
algorithms by arti®cially increasing the rate of pheromone evapora-
tion beyond biological plausibility.

The classic Travelling Salesman Problem (TSP), which consists of
®nding the shortest tour between n cities visiting each once only and
ending at the starting point, illustrates how the use of arti®cial
pheromones can be applied to hard optimization problems4,5. Each
arti®cial ant visits the n cities to construct a tour. After completing
its tour it lays `arti®cial pheromone' on the links it has used in an
amount that is proportional to the quality of the tour, so that links
which belong to good solutions end up with more pheromone than

the other links. To construct a tour, each ant tends to select a city
connected to its current city by a link that has more pheromone than
the others: this selection process ampli®es previously reinforced
links and leads to the emergence of a good solution. Pheromone
evaporates at a ®xed rate after all ants have constructed their tours.
Evaporation prevents mediocre links from being ampli®ed by
accident. The mathematical description of the simplest ACO
algorithm described in Box 2 is a proof-of-concept, which performs
poorly on large TSP instances. More sophisticated versions include
a local search that seeks to improve existing solutions by evaluating
the effects of small changes (such as swapping two cities), a more
complex tradeoff between exploration and exploitation, increased
reinforcement of the best tour, and other re®nements. Such
improvements make the algorithm much more competitive, in
terms of both computing time and quality of solutions5,40: compari-
sons of an improved ACO algorithm with other ef®cient, state-of-
the-art implementations of general-purpose approaches for the TSP

Box 1
How ants ®nd the shortest path

Ant colonies can collectively perform tasks and make decisions that
appear to require a high degree of co-ordination among the workers:
building a nest, feeding the brood, foraging for food, and so on. In the
example presented here, the ants collectively discover the shortest path
to a food source. In experiments with the ant Linepithaema humile, a food
source is separated from the nest by a bridge with two branches1,2. The
longer branch is r times longer than the shorter branch (Fig. 2a).

The shorter branch is selected by the colony in most experiments if r is
suf®ciently large (r = 2 in Fig. 2b). This is because the ants lay and follow
pheromone trails: individual ants lay a chemical substance, a pher-
omone, which attracts other ants. The ®rst ants returning to the nest from
the food source are those who take the shorter path twice (from the nest
to the source and back). At choice points 1 and 2, nestmates are
recruited toward the shorter branch, which is the ®rst to be marked with
pheromone. If, however, the shorter branch is presented to the colony
after the longer branch, the shorter path will not be selected because the
longer branch is already marked with pheromone (Fig. 2b).

This problem can be overcome in an arti®cial system, by introducing
pheromone decay: when the pheromone evaporates suf®ciently quickly,
it is more dif®cult to maintain a stable pheromone trail on a longer path.
The shorter branch can then be selected even if presented after the
longer branch. This property is particularly desirable in optimization,
where one seeks to avoid convergence toward mediocre solutions. In
Linepithaema humile, although pheromone concentrations do decay, the
lifetime of trail pheromones is too large to allow such ¯exibility.
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(genetic algorithm27, iterated local search and iterated Lin-Kernighan,
see http://wwwkeck.caam.rice.edu/concorde.html) show that the
ACO algorithm is competitive, always providing among the best
results.

In addition to ®nding very good solutions to `static' problems,
the algorithm also maintains a pool of alternative portions of
solutions, which can be especially useful when the problem is
dynamically changing: the algorithm can channel new searches
toward this pool. This is because the pheromone update equation
ensures that every link has at least a small amount of pheromone: a
weakly used link can be quickly reinforced and replace a missing or
failing link. Although there is no formal framework for quantifying
the performance of optimization algorithms in dynamic environ-
ments, the ¯exibility and robustness of an algorithm are important
factors when it comes to real-world implementations.

The TSP is a natural application of ACO, but many other
combinatorial optimization problems can be solved with ACO.
ACO is currently the best available heuristic for the sequential
ordering problem and for real-world instances of the quadratic
assignment problem, and is among the most competitive
approaches for the vehicle and network routing problems, as well
as for a number of other problems (see Table 1). Regarding real-
world applications, an ACO implementation for multi-stage factory
scheduling is under study at Unilever (D. Gregg et al., personal
communication), and gasoline trucks are now being routed with the
help of an ACO algorithm in Italian Switzerland (L. M. Gambardella,
personal communication).

ACO, however, does not always work well. For example, it does
not perform as well as other heuristics on any problem's instances
that have been uniformly randomly generated3. The reason is that
ACO tends to reinforce portions of solutions that belong to many
good solutions: the more good solutions a given portion belongs to,
the more virtual pheromone it receives. If a large number of
portions of solutions are equally likely to be part of good solutions,
ACO cannot differentiate them and therefore performs poorly.
However, many real-world problems do possess enough of the
requisite `structure' to allow this approach to be very ef®cient.
Other optimization techniques, based on exotic neural networks11

or evolutionary algorithms12, rely on the same `building block'
principle, that is, they attempt to ®nd the building blocks of good
solutions by maintaining a search statistics. In ACO, the search
statistics is summarized into pheromone concentrations, which,
after a suf®cient number of iterations, indicate the likelihood that
particular portions of solution, or building blocks, belong to one of
the best solutions. ACO not only identi®es building blocks but also
identi®es correlations between building blocks: for example, two or
more portions of solution may be desirable only if used together.
This property is crucial, as most instances of most problems are not
readily `linearly' decomposable into building blocks.

Ant Colony Routing in communications networks
ACO has an additional feature that makes it particularly appealing:
it is explicitly formulated in terms of computational agents.
Although it may be, in principle, possible to focus only on the
core optimizing mechanism (reinforcement of portions of solutions
and global dissipation), the agent-based formulation is a useful aid
for designing problem-solving systems. The example of routing in
communications networks illustrates this point.

Routing is the control mechanism that directs every message in a
communications network from its source node to its destination
node through a sequence of intermediate nodes or switching
stations. Each switching station has a routing table that tells
messages or portions of messages called packets where to go,
given their destinations. Because of the highly dynamic nature of
communications networks, due to the time-varying stochastic
changes in user traf®c patterns as well as to unpredictable failures
of network components, portions of a network may become
congested and new routes have to be discovered dynamically. In
Ant Colony Routing (ACR), ®rst described by Schoonderwoerd
et al.6, ant-like agents reinforce routing-table entries depending on
their experience and performance in the network6±8. For example, if
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Box 2
Ant Colony Optimization and the Travelling Salesman Problem

The Travelling Salesman Problem (TSP) consists of ®nding the shortest
tour between n cities visiting each once only and ending at the starting
point. Let dij be the distance between cities i and j and tij the amount of
pheromone on the edge that connects i and j. tij is initially set to a small
value t0 , the same for all edges (i,j). The algorithm consists of a series of
iterations. One iteration of the simplest ACO algorithm applied to the TSP
can be summarized as follows: (1) a set of m arti®cial ants are initially
located at randomly selected cities; (2) each ant, denoted by k,
constructs a complete tour, visiting each city exactly once, always
maintaining a list Jk of cities that remain to be visited; (3) an ant located at
city i hops to a city j, selected among the cities that have not yet been
visited, according to probability pk

ij � ��tij�
a×�dij�

2 b�=�Sl[Jk
�til�

a×�dil�
2 b�,

where a and b are two positive parameters which govern the respective
in¯uences of pheromone and distance; (4) when every ant has completed
a tour, pheromone trails are updated: tij Ã �1 2 r�tij � Dtij, where r is the
evaporation rate and Dtij is the amount of reinforcement received by edge
(i,j). Dtij is proportional to the quality of the solutions in which (i,j) was used
by one ant or more. More precisely, if Lk is the length of the tour Tk

constructed by ant k, then Dtij � Sm
k�1Dtk

ij , with Dtk
ij � Q=Lk if �i; j� [ Tk

and Dtk
ij � 0 otherwise, where Q is a positive parameter. This reinforce-

ment procedure re¯ects the idea that pheromone density should be lower
on a longer path because a longer trail is more dif®cult to maintain.

Steps (1) to (4) are repeated either a prede®ned number of times or until
a satisfactory solution has been found. The algorithm works by
reinforcing portions of solutions that belong to good solutions and by
applying a dissipation mechanism, pheromone evaporation, which
ensures that the system does not converge early toward a poor solution.
When a � 0, the algorithm implements a probabilistic greedy search,
whereby the next city is selected solely on the basis of its distance from
the current city. When b � 0, only the pheromone is used to guide the
search, which would re¯ect the way the ants do it. However, the explicit
use of distance as a criterion for path selection appears to improve the
algorithm's performance4,5. In all other optimization applications also, an
improvement in the algorithm's performance is observed when a local
measure of greed, similar to the inverse of distance for the TSP, is
included into the local selection of portions of solution by the agents.
Typical parameter values are: m � n, a � 1, b � 5, r � 0:5, t0 � 102 6.

Table 1 Some applications of Ant Colony Organization and Ant Colony
Routing

Problem name Year Main references Algorithm name
.............................................................................................................................................................................

Travelling salesman 1991 4 AS
1997 5 ACS & ACS-3-opt
1997 28 MMAS

.............................................................................................................................................................................

Network routing 1997 6 ABC
1998 7 Co-operative Asymmetric

Forward
1998 8 AntNet
1999 29 ABC-backward

.............................................................................................................................................................................

Graph colouring 1997 30 ANTCOL
.............................................................................................................................................................................

Shortest common supersequence 1999 31 AS-SCS
.............................................................................................................................................................................

Quadratic assignment 1999 32 HAS-QAP
1999 33 MMAS-QAP
1999 34 AS-QAP

.............................................................................................................................................................................

Machine scheduling 1999 35 ACS-SMTTP
.............................................................................................................................................................................

Vehicle routing 1999 36 AS-VRP
1999 37 MACS-VRPTW

.............................................................................................................................................................................

Multiple knapsack 1999 38 AS-MKP
.............................................................................................................................................................................

Frequency assignment 2000 39 ANTS-FAP
.............................................................................................................................................................................

Sequential ordering 1997 40 HAS-SOP
.............................................................................................................................................................................
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an agent has been delayed a long time because it went through a
highly congested portion of the network, it will weakly reinforce
routing-table entries that send messages to that portion of the
network; an agent that enjoyed ¯uid traf®c conditions will apply a
stronger reinforcement. A dissipation or evaporation mechanism is
also applied regularly to the routing-table entries to refresh the
system and prevent obsolete solutions from being maintained.

When tested on simulated networks and realistic traf®c condi-
tions, ACR appears to outperform routing algorithms which are in
widespread use, especially, but not only, in strongly variable traf®c
conditions8 (Fig. 1). Maintaining a pool of alternate routes is the
way the system copes with changing conditions, including node
failure, and this technique makes it ¯exible and robust. Although
some of the reported results are quite good, intensive real-world
testing would be useful. Recent news articles indicate that British

Telecom and MCI-Worldcom have been and still are using algo-
rithms based on the ant colony metaphor13.

Other applications inspired by social insects
Ant foraging is not the only social insect behaviour that has inspired
computer scientists and roboticists. Other examples include
division of labour, brood sorting and co-operative transport.
Division of labour. In most social insect species, individual workers
tend to be specialized in certain tasks for a varying portion of their
lifetime14. But the behavioural repertoire of workers can be stretched
back and forth in response to perturbations: if needed, a forager can
become a nurse, or a nurse a guard, and so forth. Such a combina-
tion of specialization and plasticity in task allocation is appealing
for multi-agent optimization and control. A response threshold
model of division of labour has been used to solve dynamic task
scheduling problems3,15. In a threshold model14, workers with low
response thresholds respond to lower levels of stimuli than do
workers with high response thresholds. Task performance reduces
the intensity of stimuli. If workers with low thresholds perform their
normal tasks the task-associated stimuli never reach the thresholds
of the high-threshold workers. But if, for any reason, the intensity of
task-associated stimuli increases, high-threshold workers engage in
task performance. For example, to allocate trucks coming out of an
assembly line to paint booths in a truck factory, each paint booth is
considered to be an insect-like agent that is specialized in one
colour; but if needed, the paint booth can change its colour
(although this is costly). Thus, the swarm intelligent system mini-
mizes task changeovers and can cope with glitches3.
Brood sorting. In the ant Leptothorax unifasciatus, workers sort the
brood16. Eggs and microlarvae are compactly clustered at the centre
of the brood area; the largest larvae are located at the periphery of
the brood cluster; when pupae and prepupae are present, they are
located between peripheral large larvae and the more central larvae
of medium size. Deneubourg et al.17 have proposed a model of this
phenomenon, recognizing that many of their model's assumptions
had to be tested. In the model, an ant picks up and drops an item
according to the number of similar surrounding items. For example,
if an ant carries a large larva, it will drop the larva with high
probability in a region populated by large larvae, or if an unladen
ant ®nds a large larva surrounded by eggs, it will pick up the larva
with high probability; in all other situations the ant will neither drop
nor pick up any item. Although the model still needs validation,
computer scientists have found it useful for data sorting. Lumer and
Faieta9 and Kuntz et al.10 have applied it to the following problem.
Given a data set of points in an n-dimensional space and a metric d
which measures the distance between pairs of data points, project
the points onto the plane so that if any two projected points in
the plane are neighbours, their corresponding data items are
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Figure 1 Typical result of a comparison of AntNet, an Ant Colony Routing algorithm, with

other widespread routing algorithms for packet-switched networks (see ref. 41 for an

overview of communications networks). OSPF is the Open Shortest Path First algorithm,

the current of®cial Internet routing algorithm3,8. BF is the asynchronous distributed

Bellman-Ford algorithm with a dynamic cost metric3,8,41. SPF is the Shortest Path First

algorithm with a dynamic cost metric3,8. Q-R is the Q-Routing algorithm3,8. PQ-R is the

Predictive Q-Routing algorithm3,8, an extension of Q-Routing. Daemon is an approximation

of an ideal algorithm and provides a bound to the best performance achievable3,8. The

network, the underlying architecture of which is that of NSFnet, is highly loaded with

stochastic time-varying traf®c. At time 400 a sudden increase in traf®c, lasting 120 s,

takes the network to saturation conditions. The upper graph compares throughput (the

larger the better), while the lower graph packet delays averaged over a 5-s time window

(the smaller the better). AntNet provides the same throughput as the best competing

algorithms maintaining a much lower average packet delay. After ref. 8, courtesy of the AI

Access Foundation and Morgan Kaufmann.
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neighbours under the metric d. The initial projection of data items
onto the plane is random. The arti®cial ants then perform random
walks on the plane and pick up or drop projected data items using
rules from the model17. The results are qualitatively equivalent to
those obtained by such classic techniques as spectral decomposition
or stress minimization10, but at a much lower computational cost.
Co-operative transport. Swarm Intelligence is also an inspiration
for roboticists to design distributed control algorithms for groups,
or swarms, of robots18±22. One example of a task that has been used
as a benchmark for swarm robotics is co-operative transport, or
more precisely co-operative box pushing20,21. Co-operative trans-
port has been reported in several ant species23±25. When it is
impossible for a single ant to retrieve a large prey item, nestmates
are recruited. Then, for a few minutes, the ants change position and
alignment around the prey item without making progress, until it
can be moved toward the nest. This emergent co-ordination has been
reproduced by Kube and Zhang21 in a swarm of very simple robots
whose task is to push a box toward a goal. Their work shows how a task
that appears to require the co-ordinated efforts of several robots can be
performed without explicit co-ordination or communication among
the robots. Such work is promising in the perspective of miniaturiza-
tion and low-cost robotics (see for example the Alice micro-robots
at http://dmtwww.ep¯.ch/isr/asl/projects/alice_pj.html).

Perspectives
The initial appeal of Swarm Intelligence to computer scientists was
almost entirely due to their fascination with ants. The surprisingly
good results obtained by several groups of researchers make it even
more appealing for optimization and control applications, espe-
cially in view of the ability of swarm intelligent systems to cope with
glitches and changing environments.

A number of problems, best exempli®ed by routing in telecom-
munications networks, are simply much better tackled with com-
putational agents. The breakthrough brought by Swarm Intelligence
is permitting the design of agent-based, distributed optimization
and control techniques. We view Swarm Intelligence as a major new
paradigm in optimization and control. Its closest relative would be
the arti®cial neural network paradigm. Indeed, an ant colony is a
`connectionist' system, that is, one in which individual units are
connected to each other according to a certain pattern. However,
crucial differences from typical neural networks include: (1) the
dynamic nature of the connectivity pattern, which can be exploited
by examining how ants or other social insects solve problems;
(2) the explicit or implicit mobility of the units, which is an
essential feature of ACO and ACR; (3) feedback from the environ-
ment, which is used as a medium of co-ordination and commu-
nication; and (4) the use of pheromone evaporation in ACO,
which dramatically facilitates the design of distributed optimiza-
tion techniques.

We have no doubt that more practical applications of Swarm
Intelligence will continue to emerge. In a world where a chip will
soon be embedded into every object, from envelopes to trash cans to
heads of lettuce, control algorithms will have to be invented to let all
these `dumb' pieces of silicon communicate26. Meanwhile, a better
understanding of how and why methods based on social insects
work and more systematic comparisons with other heuristics for
optimization and control are needed. M
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